Arquivo da tag: Quântica

Posts sobre mecânica quântica.

Um diagrama nada claro

Rookie

Na faculdade, aprendemos a física por sua trajetória histórica: começamos pelas leis de Newton, sua mecânica, passamos ao estudo de ondas, óptica, termodinâmica, atravessamos o eletromagnetismo e terminamos a “física básica” com quântica. Mais para o final do curso, continuamos com a física do século XX, da qual a quântica faz parte, além de incluir a física estatística e a relatividade geral nessa história. Matérias mais avançadas, como a teoria quântica de campos (TQC) e a teoria estatística de campos (TEC) são assunto de mestrado e doutorado, muita gente parece viver bem feliz sem jamais tocar em um livro de qualquer dessas matérias.

Mas a relação entre as áreas da física não é essa histórica, uma não leva naturalmente a outra. É possível ser muito feliz em uma área da física sem jamais precisar se aprofundar muito em outra (ainda que grandes descobertas costumem ser feitas apenas por físicos com um vasto conhecimento de quase todas as áreas), não preciso saber astronomia para trabalhar com física do estado sólido (ou física dos materiais).

Então decidi tomar alguns minutos, sentar e pensar em um diagrama mais compreensivo da física, que leve em conta as interconexões entre as áreas e que seja uma divisão justa e organizada dessa ciência. É evidente que cheguei a algo bem confuso, mas o resultado não ficou feio, e coloco-o aqui.

Muitos físicos vão discordar com ferocidade da divisão e organização, mas foi o melhor que pude, não conheço tanto de todas as áreas para entrar em uma reflexão mais profunda que o que escrevo nesse post.

Comecei colocando a matemática como centro. A física é inteira apoiada na matemática, e nela estão muitos dos vínculos das áreas da física. Em seguida, tracei as três principais áreas da física: relatividade (geral ou restrita), física estatística e física quântica.

Física quântica: é o estudo do muito pequeno, muito mesmo. Estamos falando de elétrons, prótons, átomos, nada que possamos ver ou tocar diretamente, precisamos estar pelo menos a 0,00001 mm ($10^{-8}$m) para começar a sentir algum efeito dos estudos dessa área. Ainda, é o que precisamos estudar para entender do que as coisas são feitas, como fazer coisas novas, materiais novos, entender as leis que regem a escala atômica e usá-las.

Relatividade: estudamos os efeitos de velocidades muito altas (próximas às da luz, que é a máxima possível), massas muito grandes (como a da Terra ou a do Sol) e energias muito elevadas (como a explosão de uma estrela).

Física estatística: é a área que tenta deduzir, a partir do mundo do muito pequeno, o que acontecerá no nosso mundo. Tentamos entender como a gota de água tende a ficar junta se ela é feita de várias moléculas, ou como não conseguimos atravessar a parede se o espaço entre os átomos é muito maior que os átomos.

Assim, posso explorar as intersecções entre essas áreas. Se estamos na fronteira entre relatividade e quântica, estamos falando da teoria quântica de campos (TQC), uma área bem complicada que tenta escrever a mecânica quântica em uma linguagem que leve a relatividade em conta. Não me atrevo a tentar misturar relatividade geral com quântica, ninguém consegue fazer isso decentemente. Entre a física estatística e a quântica, teremos a teoria estatística de campos (TEC), que usa diversas propriedades do mundo do muito pequeno para explicar muito fenômenos do nosso cotidiano, em uma linguagem matemática bem trabalhada e bem parecida com a da TQC. Eu poderia colocar tudo em uma área só, campos, mas assim fica mais fácil de ver.

Entre a relatividade e a física estatística, temos a astrofísica, o estudo das propriedades físicas das estrelas, galáxias, que exige tanto conhecimento de relatividade, por reger as leis fundamentais desses corpos, como conhecimentos da física estatística, porque uma estrela é formada de muitos átomos e uma galáxia de muitas estrelas. A relatividade, sozinha, inclui a nossa querida mecânica do colegial, que é apenas um caso particular da relatividade para baixar velocidades e massas suficientemente pequenas. A física estatística, quando aplicada a gases e líquidos, torna-se a termodinâmica.

Se continuamos, podemos pensar que o estudo das propriedades físicas dos corpos celestes aliado às leis de Newton nos permite saber a posição, trajetória e diversas outras grandezas estudadas pela astronomia. A astrofísica, quando estudada em grande escala e recebendo o apoio das leis da termodinâmica e da física estatística, torna-se a cosmologia: o estudo do universo como um todo, sua expansão, evolução e destino. Aplicar a teoria estatística de campos à termodinâmica nos torna capazes de descrever estruturas mais complexas que gases, podemos até pensar em cristais, coloides, plásticos, estamos na física do estado sólido. A teoria quântica de campos e a teoria estatística de campos se encontram para descrever propriedades complicadas do mundo subatômico, permitindo-nos estudar a física de partículas. Por fim, a teoria quântica de campos, capaz de descrever os elétrons e os prótons (que possuem carga) e a mecânica de Newton se encontram no eletromagnetismo.

Por fim, podemos colocar algumas outras áreas. O eletromagnetismo é muitas vezes estudado profundamente no aspecto de transmissão de energia eletromagnética em forma de onda, uma área conhecida como óptica, que engloba toda a propagação de ondas eletromagnéticas no vácuo ou não. A física do estado sólido e a de partículas se encontram para tentar gerar materiais novos, diferentes, estruturas moleculares complicadas, e podemos atribuir esse estudo à química molecular, que não é tanto física assim, mas merecia um lugar no diagrama. As partículas e o eletromagnetismo juntam forças para desbravar os mistérios do centro do átomo, em uma área muito ativa no último século chamada física nuclear. E das partículas, sozinha e um pouco isolada, quase uma sub-área da matemática, parte a teoria das cordas.

Qual a lógica do diagrama? Se você quiser estudar alguma área, terá que saber bastante de todas as áreas internas à que escolheu, estudando todas as que sua área toca no anel interior. Claro, isso não torna as áreas exteriores mais difíceis, você muitas vezes não precisa se especializar nas áreas interiores para saber a sua, é apenas um diagrama que indica vínculo, procedência e contato entre as áreas. Queria que o diagrama terminasse com um anel completo, mas não consegui pensar em nada que viesse de estado sólido e cosmologia, ou nada melhor para colocar entre astronomia e cosmologia que “coisas do espaço”.

Lagartixas

Rookie

Lagartixas são demais.

Em uma prova minha de mestrado, elas foram o tema. Nada de biologia, o professor nos conduzia através de um artigo muito interessante que tentava desvendar esse impressionante mistério de como as lagartixas sobem paredes. Como disse a cantora infantil Mariane: se você pensa que sabe tudo, lagartixa sabe mais, ela sobe na parede, coisa que você não faz. E o artigo se propunha a estudar como, afinal, ela consegue isso?

Insetos sobem e descem paredes em qualquer direção, para qualquer lado, sem nem precisar de muito esforço. De maneira surpreendente, os insetos não ficam na parede pela mesma razão; a mosca e a aranha (decerto, não um inseto, mas algo parecido) possuem mecanismos de fixação completamente diferentes, fisicamente diferentes, isso é bem impressionante. Você provavelmente assistiu ao filme “Homem-Aranha”, deve ter visto aqueles pequenos ganchos crescendo na palma da mão de Peter Parker e caído na armadilha de pensar que aranhas usam de fato pequenos ganchos curvados para baixo para escalar paredes. Ora, se assim fosse, elas até conseguiriam subir, mas como explicar o fato de elas também conseguirem descer de ponta-cabeça? Você precisaria inverter o sentido dos ganchos para impedir o pobre artrópode de cair, essa teoria é furada, aranhas não sobem paredes como alpinistas. A aranha sobe a parede como a lagartixa; a mosca, de um outro modo. Apenas recentemente o modo da lagartixa foi determinado, em uma série de experimentos que, aos físicos, não deve ter sido das mais convencionais.

Vamos conversar primeiro sobre a mosca. Vocês devem saber que esse inseto deixa um rastro por onde passa. Este líquido é a base da fixação da mosca na parede ou teto, o que chamamos de “força de capilaridade”. A água, maior parte desse líquido, possui uma grande força de coesão interna, moléculas de água atraem-se mutuamente com bastante força. Tanto elas se atraem que a água é capaz de vencer a força da gravidade em materiais hidrofílicos (que atraem água) como o papel-enxuga. Se você não acredita em mim, faça o seguinte: encha um copo com água, coloque outro vazio ao lado, faça um rolinho com papel-enxuga e mergulhe uma ponta na água, enquanto a outra você deixa no copo vazio, e eu garanto que, no dia seguinte, haverá a mesma quantidade de água nos dois copos. E se você ainda não acredita em mim, acredite nesse asiático:

[youtube=http://www.youtube.com/watch?v=DmobAKBHqng]

Esse fenômeno é mais complicado e mais legal que isso, merece um post apenas para si e o terá. A mosca lança esse líquido e o usa como “ponte” entre sua pata e a parede. A água funcionará como cola, mas é somente água. Ela é atraída pela pata, é atraída pela parede e gosta de ficar junta, logo, a mosca consegue subir superfície deixando pequenas pegadas líquidas no caminho.

A lagartixa não! Para estudar como ela sobe a parede, eles precisaram realizar testes com diversos materiais e, por fim, concluíram que esse pequeno lagarto sobe a parede com forças de Van der Waals, em especial a chamada força de London. Forças de Van der Waals são pequenas interações entre as partículas, bem mais fracas que aquelas interações entre próton e elétron. Elas são interações “residuais”, que sobraram, resultado de átomos e moléculas serem grandes agregados de partículas positivas e negativas. É um pouco difícil entender o que é essa força, vou tentar explicar. As moléculas da pata da lagartixa, que são gigantescos conjuntos de átomos chamados $\beta$-keratina, possuem um número equivalente grande de elétrons. Quando a pata encosta na parede, ambos são neutros, não se atraem eletricamente, mas essa proximidade induz uma polarização das moléculas, ou seja, é como se, por ficarem próximas, a pata e a parede se tornassem imãs e começassem a se atrair. Vou colocar uma imagem bem precária para explicar, mas não achei melhor:

A proximidade induz a polarização, os pontinhos são os elétrons.

Esse fenômeno é um pouco mais complicado do que parece, por causa da mecânica quântica (Aos que conhecem alguma coisa, digo que esse efeito só é visto da segunda ordem da perturbação do hamiltoniano acoplado das partículas, quem não tem ideia do que acabei de dizer, ignore o parênteses). Alguns desses pequenos “imãs” serão em um sentido, outros em outro, então a lagartixa e a parede ficarão, na média, neutras, mas compostas de diversos pequenos microimãs que sustentam a lagartixa na parede!

A aranha possui o mesmo esquema. Aqueles não são ganchos, são superfícies com essas características. No caso da lagartixa, a pata é toda enrugada para aumentar a superfície de contato e aumentar essa força sem precisar ter uma pata gigantesca. Curiosamente, pela alta polarixabilidade da β-keratina, a lagartixa consegue forçar esse fenômeno em quase toda superfície. As moscas não conseguem subir em superfícies que não atraem água, como o silício, mas a lagartixa consegue tranquilamente.

Experimentos com lagartixas em material hidrofóbico.

Desse artigo, vale destacar as frases: “To measure only a single toe, we restrained the geckos by hand, and held the other toes in a flexed position. We excluded any trial in which the gecko struggled or moved its toe.“. Foi experimentando com materiais hidrofóbicos (que não atraem água) que os físicos definiram o método de fixação das lagartixas. Mas, se você quisesse construir uma luva do homem-aranha para você, precisa de uma densidade de “ganchos” quatro mil vezes maior que a da lagartixa, o que é impraticável. Ainda, fica o sonho de um dia colarmos nossas prateleiras na parede com forças de Van der Waals, ou de, com alguns ganchos crescendo nas mãos, virarmos o Homem-Aranha.