No cassino de Parrondo

Geek Rookie

A estatística possui alguns resultados não muito intuitivos, e muito divertidos. Um deles, proposto pelo físico espanhol Juan Parrondo, é um de meus favoritos. Para contar esse aparente paradoxo, convido-os a jogarem um jogo no cassino de Parrondo.

Esse cassino possui duas mesas, uma com um jogo A, outra com um jogo B, que possuem regras diferentes. Em ambos os jogos você só pode apostar uma ficha por vez, digamos, valendo R$100,00. Se você ganhar, leva mais uma ficha consigo. Se perder, perde sua ficha.

No jogo A você deve tirar uma carta de um baralho muito bem embaralhado. Se a carta for preta, você ganha. Se for vermelha, você perde. Neste maço de baralho, contudo, há um curinga; e você perde se tirar o curinga.

No jogo B, as regras mudam um pouco. Se seu número atual de fichas não for um múltiplo de três, suas chances são ótimas: você tira uma carta e perde apenas se ela for de copas ou o curinga. No entanto, se seu número de fichas for múltiplo de três, você deve tirar um às ou o curinga para ganhar, perdendo em todos os outros casos.

Não é surpresa nenhuma se eu te contar que o jogo A é falência na certa. A chance de você perder é maior que a de ganhar, e o ganho é igual à perda; jogar diversas vezes seguidas o jogo A fará você sair do cassino de mãos vazias. E apesar de o jogo B parecer um grande negócio, ele não é, podemos provar com diversas simulações numéricas, o que é o equivalente a jogar várias vezes, que a tendência é perder mais e mais dinheiro jogando o jogo B várias vezes. Assim, nas mesas do cassino de Parrondo a casa sempre vence.

Mas suponha que você pode caminhar de uma mesa à outra. Ora, certamente você só iria ao jogo B quando tem certeza de que suas fichas não são um múltiplo de três; o cassino jamais permitira algo parecido. Então você pode mudar de uma mesa para outra, mas com uma regra: você não pode contar suas fichas. Para deixar ainda mais justo, você não sabe, a cada aposta, se ganha ou perde, fica apenas sabendo o resultado final de suas aventuras ao sair do cassino. Assim, você até pode alternar os jogos, mas, sem contar as fichas e sem saber quando ganha ou perde, não consegue tirar muita vantagem disso. De certa forma, é como se você fosse obrigado a, na entrada, dizer quantas vezes irá apostar em cada jogo e em qual ordem. Assim, nunca sabendo em qual você ganha e qual perde, não poderá mudar de estratégia no meio da noite.

E eis a parte surpreendente. O jogo A é perda certa para você, o B também se jogado continuamente; mas alternar os jogos te leva a ganhar muito dinheiro. Esse fenômeno é o paradoxo aparente de Parrondo, duas táticas fracassadas que, combinadas, resultam em um ganho certeiro. Aos que não acreditam em mim, escrevi um pequeno código de computador para simular esses jogos todos. Claro, um exemplo não prova nada, coloco o resultado apenas para que sua confiança em mim aumente. O jogo A+B consiste em escolher, antes de cada jogada, aleatoriamente um dos jogos, ambos com a mesma probabilidade, como se tirasse no cara-ou-coroa a mesa escolhida para apostar. Eis os resultados, começando com uma fortuna de 47 fichas e permitindo ficar no negativo:

E esse aparente paradoxo nada mais é que um fenômeno estatístico fascinante usado abundantemente em diversos sistemas biológicos, o que inclui suas células. Temos, no caso de Parrondo, um jogo que apenas “bagunça” seu dinheiro (o jogo A, cuja chance é quase 1/2 para cada lado) e outro que te permite ganhar bastante, até atingir um valor (o múltiplo de três) bem difícil de atravessar, tão difícil que é mais fácil o jogo te fazer perder dinheiro a atravessar aquele valor e, perdendo, ele encontrará outro múltiplo de três, e será mais uma vez difícil de subir. No entanto, esse combo “bagunça+tendência” torna-se uma tática interessante, pois a bagunça pode te permitir “saltar” os múltiplos de três e, fora deles, você escala mais fácil a escada da fortuna.

 A partir desse ponto, esse post torna-se geek. Continue por sua conta em risco.

Parrondo não estudava teoria dos jogos, estudava os chamados “motores moleculares”, a base do funcionamento de diversos processos biológicos no nível celular. Suponha uma partícula submetida a um potencial da forma “dente de serra”:

Dente de serra

E suponha essa partícula com uma temperatura suficientemente baixa (ou seja, suficientemente lenta) para que fique confinada no poço. Na figura, o roxo representa a densidade de probabilidade da posição dela, note que é bem difícil ela sair daquele lugar.

Mas suponha agora que eu aumente bastante a temperatura, bastante mesmo. Ora, a partícula se comportará como se ignorando o potencial, e as chances de ir para a esquerda e para a direita tornam-se as mesmas. Mas algo é diferente, se pensarmos em qual poço é mais provável que ela caia. Veja como é a evolução desse sistema, nessa figura:

parrondo_4

Note que, no momento de alta temperatura, é mais provável que ela tombe no poço da direita (área verde) que no poço da esquerda (área vermelha). Ao resfriarmos o sistema, que é representado pelo terceiro quadro, percebemos que a partícula tende a andar pela serra para a direita. Por causa da assimetria do potencial, o sistema adquire uma direção preferencial.

A relação disso com o cassino é simples, o jogo B é a situação de temperatura baixa e o jogo A é a alta temperatura, andar para a direita significa ganhar dinheiro e perder dinheiro é andar para a esquerda. Mas o cassino de Parrondo é malandro, nele os picos de potencial não são iguais e o jogo B tende a te empurrar para a esquerda, e o jogo A também (o que seria equivalente a uma gaussiana levemente assimétrica). No entanto, pela diferença na inclinação do potencial, passar ao jogo A e voltar ao B torna o sistema mais propenso a te mandar para a direita, a direção de maior fortuna!

Esse jogo de aumento e diminuição de temperatura é a base dos motores moleculares, ele é a razão pela qual a proteína é sintetizada pelo ribossomo em um sentido e não decide, aleatoriamente, seguir o sentido oposto e ir se desfazendo. E a célula funciona, vive, produz e sintetiza proteína dessa maneira: aumento de temperatura, diminuição, aumento (o que deve explicar aquele monte de ATP sendo desfeito para fazer esse sistema andar), em um intrincado maquinário de potenciais assimétricos que nos permite andar, pensar, respirar e jogar cartas em um cassino.

O método científico

Geek

Aprendemos ainda no ensino primário sobre o método científico, e eu até lembro dessa aula. A professora trazia um ovo para a classe e pedia hipóteses sobre o destino do ovo ao ser jogado ao chão. Enumerávamos da mais óbvia à mais absurda, e por fim a professora abandonava o ovo e ele tocava o solo, estava completamente cozido e não fazia sujeira, para entendermos que o método científico é: observação de um problema, formulação de hipóteses, experimento controlado e conclusões.

Tornei-me cientista, pesquiso física, e ganho muitas caras de interrogação quando anuncio a alguém minha profissão. Cientista parece mais profissão de filme, um homem louco em jaleco cercado de vidros coloridos e de poucos amigos. Quando admitem que sou cientista, a próxima pergunta sempre é: “mas o que você faz, exatamente?”. E, para essa pergunta, e para dar uma versão mais real do método científico, listei alguns acontecimentos de um dia meu de trabalho e relato hoje com vocês. Nomeei-o “O método científico”, mas talvez título mais próprio seria “A Day in Life”. Esse post terá alguns detalhes científicos do que faço, é normal alguém de fora da área não os compreender, vou tentar explicar conforme escrevo.

9h30 Chego ao trabalho. Cheguei cedo, não costumo estar aqui antes das 10h, então aproveito para tirar de minha cadeira as coisas que o russo com que divido sala deixou ontem, escrever algo no blog, responder emails, preparar uma caneca de Earl Grey.

10h30 Passei uma hora fazendo o que deveria tomar quinze minutos, é a vida. Abro o Mathematica (programa que costuma fazer contas para mim, mas na realidade é minha cota de autoflagelação semanal). E eis meu problema de hoje: inverter uma transformada de Laplace (o que consiste a uma operação matemática bem difícil). Tento lembrar de minhas aulas sobre essa transformada, a razão de estar usando ela, tudo parece vago e um pouco difícil, vou só mandar o Mathematica fazer: InverseLaplaceTransform[f[s],s,t].

10h45 Mathematica está há quinze minutos na mesma conta, sem me devolver nada, é hora de aceitar a derrota e tentar achar um jeito mais inteligente de fazer isso.

12h Depois de alguma procrastinação com os colegas de laboratório que foram chegando, e depois de ter me forçado a manipular um pouco a forma exata da inversa transformada de Laplace, abandono qualquer esperança de resolver o problema exatamente. A forma exata é bem feia, chama-se integral de Bromwich, e não parece ser um bom caminho. Existem outros métodos, a fórmula de inversão de Post, mas tudo parece fadado ao fracasso, pois a função que quero inverter é, em um caso simples:

\[(100^{-6 – i – j} \Gamma[6 + i + j] \Gamma[-6 – i – j + s] \text{Hypergeometric1F1}[6 + i + j, 7 + i + j – s, 1/100])/ \Gamma[s] + 100^{-s} \Gamma[6 + i + j – s] \text{Hypergeometric1F1}[s, -5 – i – j + s, 1/100].\]

Vou abandonar e tentar fazer isso numericamente.

14h30 Voltei do almoço e parti para o Google buscando métodos numéricos de inversão de Laplace. Descobri como instalar coisas no Mathematica, isso é bem útil. Achei um método bom, chamado Piessens, e ele parece funcionar para funções cuja inversa da transformada eu já conheço (como $\frac{1}{s^2}$).

15h Eis o resultado do Piessens:

O que seria um resultado animador, se o que eu estivesse procurando não fosse uma probabilidade, e ainda não inventaram probabilidade negativa. Há algo errado ou com minha função, ou com o Piessens. Desço e compro um chocolate, preparo outro Earl Grey.

16h Minha função parece boa, o problema é no Piessens, e isso está me deixando nervoso. Durante minha palestra de exposição desse problema, um colega russo (não aquele com que divido sala) perguntou se não valia a pena abrir a série em Taylor e inverter termo a termo, eu respondi que não podia garantir a convergência, mas agora essa ideia parece animadora, tendo em vista a probabilidade negativa.

16h45 Maldito russo, aposto que ele nunca tentou abrir em Taylor e mandar a transformada. Sabe quem é a inversa de Laplace de $x^n$? A n-ésima derivada da delta de Dirac. Agora imagine eu com uma bela coleção de derivadas do delta com coeficientes diferentes para somar, de quê isso me serve? Era para ser uma probabilidade! Veio uma ideia: integrar essa probabilidade para ter a cumulada. Sabe o que acontece? A probabilidade de obter um valor menor que $r$ não depende de $r$ ! E a razão fica evidente uma vez que o método fracassa, só pode ser culpa da inversão da soma com uma operação integral, que pode ser resolvida com o teorema:

Teorema (da convergência dominada de Lebesgue): Ninguém troca integral com limite impunemente.

Vou tentar baixar outro método.

17h15 Achei um, chamado GWR, funciona para funções simples.

18h Eis o resultado com GWR:

E, depois desse gráfico, surge aquele pensamento de “o que estou fazendo com minha vida…?” aliado a uma vontade desenfreada de arremessar o Mathematica pela janela.

18h30 Depressão, seguida de raiva, dá lugar à aceitação. Fim de jogo, vou para casa, amanhã penso em outra coisa. Tento a barganha, ao menos, em um único dia, descobri três maneiras diferentes de não resolver meu problema.

Um diagrama nada claro

Rookie

Na faculdade, aprendemos a física por sua trajetória histórica: começamos pelas leis de Newton, sua mecânica, passamos ao estudo de ondas, óptica, termodinâmica, atravessamos o eletromagnetismo e terminamos a “física básica” com quântica. Mais para o final do curso, continuamos com a física do século XX, da qual a quântica faz parte, além de incluir a física estatística e a relatividade geral nessa história. Matérias mais avançadas, como a teoria quântica de campos (TQC) e a teoria estatística de campos (TEC) são assunto de mestrado e doutorado, muita gente parece viver bem feliz sem jamais tocar em um livro de qualquer dessas matérias.

Mas a relação entre as áreas da física não é essa histórica, uma não leva naturalmente a outra. É possível ser muito feliz em uma área da física sem jamais precisar se aprofundar muito em outra (ainda que grandes descobertas costumem ser feitas apenas por físicos com um vasto conhecimento de quase todas as áreas), não preciso saber astronomia para trabalhar com física do estado sólido (ou física dos materiais).

Então decidi tomar alguns minutos, sentar e pensar em um diagrama mais compreensivo da física, que leve em conta as interconexões entre as áreas e que seja uma divisão justa e organizada dessa ciência. É evidente que cheguei a algo bem confuso, mas o resultado não ficou feio, e coloco-o aqui.

Muitos físicos vão discordar com ferocidade da divisão e organização, mas foi o melhor que pude, não conheço tanto de todas as áreas para entrar em uma reflexão mais profunda que o que escrevo nesse post.

Comecei colocando a matemática como centro. A física é inteira apoiada na matemática, e nela estão muitos dos vínculos das áreas da física. Em seguida, tracei as três principais áreas da física: relatividade (geral ou restrita), física estatística e física quântica.

Física quântica: é o estudo do muito pequeno, muito mesmo. Estamos falando de elétrons, prótons, átomos, nada que possamos ver ou tocar diretamente, precisamos estar pelo menos a 0,00001 mm ($10^{-8}$m) para começar a sentir algum efeito dos estudos dessa área. Ainda, é o que precisamos estudar para entender do que as coisas são feitas, como fazer coisas novas, materiais novos, entender as leis que regem a escala atômica e usá-las.

Relatividade: estudamos os efeitos de velocidades muito altas (próximas às da luz, que é a máxima possível), massas muito grandes (como a da Terra ou a do Sol) e energias muito elevadas (como a explosão de uma estrela).

Física estatística: é a área que tenta deduzir, a partir do mundo do muito pequeno, o que acontecerá no nosso mundo. Tentamos entender como a gota de água tende a ficar junta se ela é feita de várias moléculas, ou como não conseguimos atravessar a parede se o espaço entre os átomos é muito maior que os átomos.

Assim, posso explorar as intersecções entre essas áreas. Se estamos na fronteira entre relatividade e quântica, estamos falando da teoria quântica de campos (TQC), uma área bem complicada que tenta escrever a mecânica quântica em uma linguagem que leve a relatividade em conta. Não me atrevo a tentar misturar relatividade geral com quântica, ninguém consegue fazer isso decentemente. Entre a física estatística e a quântica, teremos a teoria estatística de campos (TEC), que usa diversas propriedades do mundo do muito pequeno para explicar muito fenômenos do nosso cotidiano, em uma linguagem matemática bem trabalhada e bem parecida com a da TQC. Eu poderia colocar tudo em uma área só, campos, mas assim fica mais fácil de ver.

Entre a relatividade e a física estatística, temos a astrofísica, o estudo das propriedades físicas das estrelas, galáxias, que exige tanto conhecimento de relatividade, por reger as leis fundamentais desses corpos, como conhecimentos da física estatística, porque uma estrela é formada de muitos átomos e uma galáxia de muitas estrelas. A relatividade, sozinha, inclui a nossa querida mecânica do colegial, que é apenas um caso particular da relatividade para baixar velocidades e massas suficientemente pequenas. A física estatística, quando aplicada a gases e líquidos, torna-se a termodinâmica.

Se continuamos, podemos pensar que o estudo das propriedades físicas dos corpos celestes aliado às leis de Newton nos permite saber a posição, trajetória e diversas outras grandezas estudadas pela astronomia. A astrofísica, quando estudada em grande escala e recebendo o apoio das leis da termodinâmica e da física estatística, torna-se a cosmologia: o estudo do universo como um todo, sua expansão, evolução e destino. Aplicar a teoria estatística de campos à termodinâmica nos torna capazes de descrever estruturas mais complexas que gases, podemos até pensar em cristais, coloides, plásticos, estamos na física do estado sólido. A teoria quântica de campos e a teoria estatística de campos se encontram para descrever propriedades complicadas do mundo subatômico, permitindo-nos estudar a física de partículas. Por fim, a teoria quântica de campos, capaz de descrever os elétrons e os prótons (que possuem carga) e a mecânica de Newton se encontram no eletromagnetismo.

Por fim, podemos colocar algumas outras áreas. O eletromagnetismo é muitas vezes estudado profundamente no aspecto de transmissão de energia eletromagnética em forma de onda, uma área conhecida como óptica, que engloba toda a propagação de ondas eletromagnéticas no vácuo ou não. A física do estado sólido e a de partículas se encontram para tentar gerar materiais novos, diferentes, estruturas moleculares complicadas, e podemos atribuir esse estudo à química molecular, que não é tanto física assim, mas merecia um lugar no diagrama. As partículas e o eletromagnetismo juntam forças para desbravar os mistérios do centro do átomo, em uma área muito ativa no último século chamada física nuclear. E das partículas, sozinha e um pouco isolada, quase uma sub-área da matemática, parte a teoria das cordas.

Qual a lógica do diagrama? Se você quiser estudar alguma área, terá que saber bastante de todas as áreas internas à que escolheu, estudando todas as que sua área toca no anel interior. Claro, isso não torna as áreas exteriores mais difíceis, você muitas vezes não precisa se especializar nas áreas interiores para saber a sua, é apenas um diagrama que indica vínculo, procedência e contato entre as áreas. Queria que o diagrama terminasse com um anel completo, mas não consegui pensar em nada que viesse de estado sólido e cosmologia, ou nada melhor para colocar entre astronomia e cosmologia que “coisas do espaço”.

A unicidade do funil

Geek

Um de meus teoremas favoritos, e talvez um dos mais úteis que conheço, é o de Cauchy-Lipchitz. Não só sua demonstração é extremamente divertida, e pode ser vista entre as páginas 23 e 26 deste texto, ele é extremamente poderoso e dá-nos a segurança de afirmar existência e unicidade da solução de diversas equações diferenciais.

Teorema (de Cauchy-Lipschitz). Seja $f=f(y(x),x)$ uma função contínua em $x$ e localmente lipschitziana em $y$ no ponto $y_0$. Seja $y(x_0) = y_0$. Então existe um intervalo $[x_0-\varepsilon, x_0+\varepsilon]$ tal que a equação diferencial

\[\frac{dy(x)}{dx}=f(y(x),x)\]

possui solução única.

Esse teorema é bem forte, já que as condições não são tão exigentes. Todas as funções elementares são contínuas nos pontos de seu domínio, e a condição de localmente lipschitziana, um pouco mais forte, também não é difícil de obter, basta ter uma primeira derivada que não divirja em um dado ponto que a função já é localmente lipschitziana naquele ponto. Em uma explicação grosseira, essa propriedade é o equivalente a exigir um “crescimento controlado” da função, naturalmente funções cujas derivadas primeiras divergem não são nada controladas.

E para provar que toda função contínua cuja primeira derivada não diverge é localmente lipschitziana basta escrever o teorema do valor médio e perceber que ele é exatamente a definição de uma função localmente lipschitziana.

Mas esse post não é sobre resultados da análise real, que são interessantes, mas sobre o problema do funil, conhecido também como clepsidra. Nele, tentamos estudar a velocidade com que a água desce um funil. Chamamos a velocidade no topo da coluna de água $v_A$, sua velocidade na saída de $v_B$, e as superfícies do topo e da saída de $S_A$ e $S_B$ respectivamente. Orientamos a altura no sentido evidente, com a origem na base do funil.

Podemos usar a equação de Bernoulli entre os extremos da água:

\[ \frac{1}{2}\rho v_A^2+\rho gh=\frac{1}{2}\rho v_b^2\]

\[v_A^2=2\left(1-\frac{S_B^2}{S_A^2}\right) gh=2\alpha gh.\]

Notem que eu também usei a equação da conservação da massa, em que $S_Av_A=S_Bv_B$, para isolar a velocidade em A. No final, temos uma equação que relaciona a altura da coluna de água com a sua velocidade:

\[ \frac{dh(t)}{dt}=\sqrt{2\alpha gh}.\]

Para obter uma solução, precisamos de uma condição inicial. E eis o nosso problema. Eu posso dar diversas condições iniciais, valores de $h(t)$, que equivalem à altura da água no instante inicial, mas uma delas, em particular, me incomodará muito: $h(0)=0$. A função $ \sqrt{x}$ não é localmente lipschitziana em zero (notem que a derivada explode, mas a explosão da derivada é apenas condição suficiente, eu teria que provar com mais calma), o teorema de Cauchy-Lipschitz não se aplica a ela se a condição inicial for dada com $h$ valendo zero!

O que é completamente esperado, pois, se eu te contar que agora o funil está vazio ($ h(0)=0$), você não pode me dizer nada sobre a história do funil (obter $h(t)$). Ele pode ter esvaziado há dez segundos (ou seja, $h(-11)$ seria diferente de zero), há três minutos, há horas, dias, pode nunca ter sido cheio (solução $h\equiv 0$); a perda da condição de localmente lipschitziana nos tira a unicidade da solução, e isso é completamente esperado: saber que o funil está vazio nada nos diz sobre quando ele esvaziou!

E essa aplicação curta, bela e tremendamente real do teorema de Cauchy-Lipscitz o torna um de meus favoritos das equações diferenciais, sendo ele já um dos mais úteis. Ao encontrar uma dessas, não hesite, veja a primeira derivada, veja a continuidade, e respire aliviado. Alguma solução existe, e é única. Isso, a um matemático, já é ter a equação quase completamente resolvida, o resto são detalhes.

A raiz do problema

Rookie

O teorema de Pitágoras é o centro da geometria de nossa oitava série, agora nono ano. Nele, aprendemos que há uma relação simples e até bonita entre os lados de um triângulo retângulo, aquele com um ângulo de 90°. O que não nos contam é a quantidade de problema que esse teorema já deu, e até as mortes que causou, na época de seu descobrimento. Os número irracionais já foram muito mais interessantes, quando havia gente que daria a vida, e mataria, para manter certas verdades ocultas na antiguidade clássica.

Pitágoras é uma figura historicamente bem misteriosa. Tudo o que se sabe sobre ele provém de séculos depois de sua morte, há mesmo quem duvide de sua existência, e todos os dados sobre ele são carregados de misticismo. Isso porque Pitágoras não era apenas um matemático, um professor, um sábio, ele foi além: em sua busca por conhecimentos e verdades nos números, enxergou um pouco mais do que devia e fundou um culto religioso envolvendo as verdades geométricas do universo.

Neste culto secreto, ciência e religião não possuíam diferença alguma e a busca pela verdade era também a busca pelo divino. O culto possuía regras de alimentação, comportamento, ser pitagórico era muito mais que pesquisar matemática, era um estilo de vida, e seu seguidores reuniam-se em uma mistura de escola com monastério no sul da atual Itália, no século V a.C.

Essa mistura não podia terminar muito bem. Diz-se na boca pequena, nesses boatos da história da matemática, que um infortunado descobriu que a raiz quadrada no número dois era um número irracional. Horrorizados com a notícia, os pitagóricos, e talvez até o próprio Pitágoras, mandaram matar este matemático para silenciar o que colocaria em cheque muito das verdades divinas descobertas pelo grupo. A razão do choque é difícil entender, mas vamos tentar, ela reside na ideia que os gregos tinham da natureza de um número.

Toda a matemática grega repousava na geometria, sua álgebra era fraca, a escrita era sempre feita em termos geométricos e os grandes trabalhos gregos versavam teoremas avançados sobre elipses, cônicas, parábolas, mas a ideia de equação está ausente em todos esses textos. Os números, como eles entendiam, eram sempre dados por proporções. Eles escolhiam um comprimento de linha, uma barra, para ser o 1. Mas isso não era “apenas” o número 1, a própria noção de número não existia muito, o 1 da contagem de ovelhas e o 1 da barra eram coisas diferentes para os pitagóricos, e gregos em geral. Essa barra de tamanho 1 representava a unidade, o fundamental, o que gera todas as coisas. E a definição de número dos gregos estava atrelada a isso. Dizer o número 3, a eles, era a barra cujo comprimento era três vezes o da barra unidade. Na ideia deles, dizer 3 era dizer:

Os demais números eram compostos de maneira parecida. A fração 21/16, por exemplo, não era ensinada com pedaços de bolo como em nossas quarta-séries, mas com pedaços da unidade. Você quebra a unidade em 16 pedaços, junta 21 deles, cola e tem o número que deseja:

E assim eles faziam a matemática. Toda barra encontrada era “numerizada” quando se quebrava a unidade em partes pequenas o suficiente para, com um bom número delas, colar e formar a barra nova. E todo número novo era sempre pensado em forma de barra ou de pedaços de barra, toda a matemática eram intersecções, retas, circunferências e pontos. Até que, um dia, um homem, dizem Hipaso de Metaponto, descobriu uma barra que não era número. E, pior, ela estava o tempo todo bem embaixo do nariz de todos. Essa barra é a raiz quadrada de dois, uma barra tão facilmente obtida quanto alguém pode desenhar um quadrado:

Essa barra, a diagonal do quadrado, não pode ser composta com pequenos pedaços da lateral do quadrado, por menores que esses pedaços sejam. Isso não é nada evidente, você pode até tentar se enganar com a fração 141/100, mas ela ainda não é perfeitamente a diagonal do quadrado e nenhuma outra fração jamais será. Se antes eles apenas achavam que era uma barra cuja fração era complicada demais, isso é um abismo em relação à ideia de “não há fração para essa barra”. Em outras palavras, isso violava a própria noção de número dos gregos, algo alienígena à matemática deles, que estava profundamente atrelada ao religioso, à noção de proveniência da unidade, da formação do todo pelo pedaço primordial, ora, nada mais natural que silenciar o herege que descobriu esse pedaço de barra infiel.

A maneira como ele descobriu isso foi geométrica, mas posso dar um argumento algébrico legal de como nenhuma fração ao quadrado dá dois. Suponha que eu seja malandro, suponha que eu tenha encontrado dois números $p$ e $q$ tais que $\left(\frac{p}{q}\right)^2=2$. Como eu estou estudando a fração, é de bom tom que $p$ e $q$ não tenham divisores em comum pois, se tiverem, basta dividir a fração em cima e embaixo pelo número para ter uma fração equivalente (ou seja, 10/15 é o mesmo que 2/3, basta eu dividir os dois por 5).

Mas se $ \left(\frac{p}{q}\right)^2=2$, então $ \frac{p^2}{q^2} = 2$ e $ p^2 = 2q^2$. Até aqui sem surpresas, apenas apliquei o quadrado nos dois elementos e passei o de baixo multiplicando. No entanto, se $ p^2$ é duas vezes alguém, ele tem que ser par. Mas se $ p^2$ é par, então $ p$ é par, pois o quadrado de um número só é par se o próprio número for par, não tem como fazer um fator 2 “surgir” quando você multiplica um número por ele mesmo. Então $ p$ é par, e, como todo bom número par, é o dobro de alguém. Vamos chamar esse alguém de $ k$, então $ p=2k$. E se $ p^2 = 2q^2$, podemos substituir esse $ p$ por $ 2k$ e escrever $ (2k)^2=2q^2\implies 4k^2=2q^2\implies 2k^2=q^2$. De novo, sem surpresas, eu apliquei o quadrado nos dois caras da esquerda, percebi que podia dividir os dois lados da equação por dois e o fiz. Então eu provo que $ q^2$ é o dobro de alguém, o tal do $ k^2$, e, com isso, é par, o que faz o próprio $ q$ ser par também. Moral da história, se $ \frac{p^2}{q^2} = 2$, então tanto $ p$ quanto $ q$ são pares.

Contudo, eu havia suposto que $ p$ e $ q$ não possuíam divisores em comum! E acabo de provar que ambos são pares, então eles possuem um divisor em comum. Ora, posso dividir ambos por dois que a fração $ \frac{p}{q}$ ainda terá dois como quadrado, mas eu posso repetir o raciocínio acima e novamente provar que eles ainda são pares, então posso dividir de novo por dois e, aplicando o raciocínio acima, provar que ainda são pares! Ora, nenhum número é infinitamente par, está na cara que caímos em contradição nesse raciocínio e isso prova que nossa hipótese inicial é falha, pois ela nos conduz a um absurdo, que é um número infinitamente par. A verdadeira moral da história é: não existem números $ p$ e $ q$ tais que $ \frac{p^2}{q^2} = 2$.

E isso prova de maneira definitiva que a diagonal do quadrado é um alienígena no mundo da matemática grega, um número que não pode ser colocado como razão entre dois outros e, nessa medida, justamente chamado de irracional. A existência de tais números foi mantida em segredo por um bom tempo, poucos queriam seguir o exemplo de Hipaso. Hoje, não apenas sabemos que eles estão por toda parte, mas que a maior parte dos números reais é, de fato, de número irracionais. Em outras palavras, se você tirar um número real ao acaso, a chance é zero de tirar um que pode ser colocado em forma de fração, mas uma definição com mais cuidado disso tudo levaria a outro post, mas um indício pode ser encontrado em um outro, mais antigo, sobre os infinitos, onde vocês podem comprovar que, se as frações entram em uma fila, o raiz de dois, este incompreendido, não entra em fila nenhuma.