Arquivos da categoria: Rookie

Posts para interessados em ciência.

Fogo e chama

Rookie

Um dia desses, tive vontade de escrever um post sobre o fogo. Sempre fui fascinado pela chama, o brilho, o calor, seu movimento. Não conseguiria, contudo, escrever nada mais didático que esses dois vídeos combinados:

[youtube http://www.youtube.com/watch?v=5ymAXKXhvHI]

[youtube http://www.youtube.com/watch?v=ITpDrdtGAmo]

Enjoy.

O teorema do sanduíche de presunto

Rookie

Comentei em outro post sobre um de meus teoremas favoritos, o das quatro cores, mas, em termos de nomenclatura, o que leva a taça é o teorema do sanduíche de presunto, ou do misto quente.

É um resultado bem geral e impressionante, de um ramo da matemática chamado “teoria da medida”, que estuda o conceito de “tamanho” dos objetos, quais podem ser medidos e o que seria essa medida. Essa área possui diversos resultados interessantes (como a relação do axioma da escolha com a impossibilidade de medir todos os conjuntos, ou com o aparecimento de aparentes paradoxos), sendo um deles esse teorema bem poderoso que nos permite dividir em duas metades bastante coisa.

Teorema (de Stone-Tukey, ou do sanduíche de presunto): dado um sanduíche com qualquer distribuição de pão, presunto e queijo, sempre é possível, com um único corte, dividir o sanduíche em duas metade contendo cada uma metade do presunto, metade do queijo e metade do pão.

Eu poderia formular como “um sanduíche de três ingredientes”, mas você seria tentado a pensar no bauru, e o pão conta como ingrediente. Teríamos, para dar certo, que tirar o tomate, e, como se sabe, por teorema, bauru sem tomate é misto.

O teorema é muito geral, vale para qualquer distribuição de ingredientes e qualquer formato de sanduíche. De forma geral, dizemos que é possível com um único corte plano dividir três elementos em pedaços de mesma medida. O teorema não nos dá o corte, tampouco diz que ele é único, mas garante que existe ao menos um, e isso já é bem impressionante.

Em duas dimensões, podemos chamar esse de teorema da panqueca. Cobrindo uma panqueca com geléia e manteiga de amendoim, existe sempre um corte, uma linha, que divide a panqueca em duas metades contendo, cada uma, metade da geléia e metade da manteiga de amendoim.

Esse resultado certamente se aplica a um caso discreto, não contínuo. Na falta de exemplos, tomo uma piscina de bolinhas com três cores de bolas. O teorema nos garante que existe sempre ao menos uma maneira de “fatiar” a piscina, ou seja, há um plano que a corta, de forma a separá-la em duas metades contendo cada uma a mesma quantidade de cada cor de bolinha. O caso em duas dimensões pode ser visto nessa figura:

Nesse caso, possuo, em cada metade, 7 vermelhas e 8 azuis. Esse corte não é necessariamente único, o teorema se encarrega apenas da existência.

Que fique, portanto, como conclusão do teorema isto: não há desculpa para pegar a maior metade, pois, dado um misto quente, sempre existe uma maneira justa de, com uma faca, reparti-lo com justiça.

A hipocicloide do futuro

Rookie

Essa semana, assisti ao filme Total Recall, que, pelos motivos mais misteriosos, resolveu ser traduzido em português para O Vingador do Futuro (ainda, poderia ser pior, eu esperava algo como Rebobinado). Esse post contém um leve spoiler, nada que não seja visto nos primeiros dez minutos de filme: ele se passa em um futuro distante onde a humanidade usa, como meio de transporte, uma forma de trem que atravessa o centro da Terra. Fiquei encantado com o meio de transporte, porque ele inspira diversas questões bem interessantes, que vamos tratar aqui.

A primeira é o que considerei um pecado no filme: a gravidade é considerada binária, ou seja, ou é ativada, ou desativada. A ideia é legal, tentar lembrar o espectador de que no centro do planeta a gravidade é zero, mas ele esquece de lembrar um detalhe: ela não se torna completamente zero no núcleo e volta a ser 9,8m/s² logo em seguida, ela decresce linearmente (considerando a Terra de densidade uniforme) até atingir o zero e depois volta a crescer conforme nos afastamos do centro. Isso resultaria em personagens ficando mais e mais leves até não sentirem a gravidade e, então, começarem a ser atraídos pelo teto ao invés de pelo chão.

Vou explicar melhor. Imagine nosso herói cavando um buraco na Terra. Ele cava diversos quilômetros e atinge um terço do caminho, ficando embaixo da superfície como na figura:

A gravidade, para ele, será equivalente a estar pisando em um planeta cujo raio é o que falta para ele chegar ao centro da Terra, ou seja, um planeta bem menor. Em outras palavras, se ele estiver a essa profundidade, a gravidade que sentirá será como estar pisando em um planeta menor, desenhado em vermelho:

Isso parece estranho, pois simplesmente ignorar toda a massa que não está no vermelho parece desonesto, ela ainda exerce força gravitacional sobre nosso herói. Mas porque as equações da gravitação são tão lindas, um fenômeno muito interessante acontece. Certamente há muita coisa além do vermelho puxando nosso herói, mas o que está acima de sua cabeça o puxa para cima, enquanto o que está do outro lado do planeta vermelho o puxa para o outro lado, de tal forma que eles se cancelam exatamente e a única massa que efetivamente puxa nosso herói é a que está no planeta vermelho. Se você achar isso estranho porque parece haver muito mais massa o puxando para a direção de seus pés (e há, de fato), deve se lembrar que essa massa também está mais distante e isso conta muito na gravitação. Confie em mim ou faça a conta, o que não está no vermelho até puxa, mas nesse cabo de guerra todas as forças se anulam mutuamente.

Assim, a gravidade tende a diminuir de forma gradual até o centro, como se o planeta ficasse cada vez menor. No filme, aproximando-se do núcleo, a gravidade torna-se zero e depois volta a ser o que conhecemos, há vários problemas com isso.

Os que conhecem o princípio da equivalência podem dizer: “Ah, Ricardo, a máquina pode estar acelerando no sentido certo para ajudar aquela gravidade fraca a se tornar forte”, e eu até concordo que esse pode ser o caso para quando o trem está se afastando do centro: uma aceleração no mesmo sentido do movimento poderia compensar a falta de planeta; mas na descida não há desculpa. É realmente crível que uma nave dessas aceleraria contra o sentido de seu trajeto apenas para manter seus tripulantes, que são fixos às cadeiras por mais travas que brinquedos da Disney, em gravidade 9,8m/s²? Não dá para engolir, o filme realmente acha que a gravidade é sempre a mesma até o núcleo, onde, do nada, se torna zero.

Mas não foi apenas isso que me deixou intrigado. As regiões conectadas pelo trem parecem ser Inglaterra e China (Wikipédia diz Austrália), se eu entendi o filme direito, mas nenhuma dessas hipóteses explica a razão do trem ter que passar pelo núcleo da Terra onde há gravidade zero. Todo bom engenheiro podendo cavar um túnel pelo interior da Terra iria se preocupar em cavar o melhor possível, e a pergunta natural é qual o formato do melhor túnel possível.

Vamos primeiro definir qual é o melhor túnel como aquele que te leva mais rápido de um lado para outro. Como dinheiro e recursos não parecem ser problemas para esse povo, queremos minimizar o tempo de voo, ou de queda. Essa é uma pergunta difícil e é um exercícios fascinante aos que gostam de mecânica analítica, um dos melhores do Goldstein, cuja solução pode ser encontrada aqui. A melhor curva que liga dos pontos passando pelo interior da Terra, aquela capaz de transportá-los no menor tempo possível, é uma hipocicloide.

Essa curva pode ser desenhada se você conseguir traçar a trajetória de um ponto em um cilindro menor que rola dentro de um maior. Para ligar três pontos sobre a superfície terrestre que estão na mesma longitude e são igualmente distantes, a melhor curva é a desde gif da Wikipédia:

E como vocês podem ver, essa curva passará pelo centro apenas se os pontos forem antipodais, ou seja, se o trem tiver de conectar um lugar ao outro lado do mundo, seu ponto diametralmente oposto na Terra. Não preciso nem de um site para saber que Inglaterra e Austrália não são opostos; o oposto da Austrália é o norte do Atlântico, sendo o da Inglaterra o Pacífico! Em honra ao filme, a escolha não é tão ruim, mas Sidney ainda está a 3.000Km do oposto de Londres no globo.

Assim, podemos nos divertir pensando: qual seria a profundidade máxima desse túnel, e quanto seria sua menor gravidade possível. Supondo as capitais ligadas Sidney e Londres, podemos usar a solução do problema acima e calcular que o túnel atinge uma profundidade de aproximadamente 5.400Km, faltando ainda bons 1.000Km para se atingir o centro da Terra. Precisamos apenas considerar a gravidade exercida pelo núcleo em nosso herói, mas aí eu vou chamar uma precisão importante, vamos abandonar a hipótese de que a Terra é homogênea e estudar a composição do núcleo terrestre para calcular essa gravidade.

Com raio de 1.000Km, estamos falando da parte mais interna do núcleo, que é sólida e composta essencialmente de ferro e níquel. Sua densidade não é bem determinada, mas confio no site desse professor que diz entre 12,6 e 13g/cm³. A massa de uma esfera desse tamanho (1.000Km) com essa densidade é de $5,5.10^{22}$Kg. A massa da Terra total é $6.10^{24}$Kg (aproximadamente 100 vezes maior que a do núcleo) e o raio total é 6,4 vezes o raio do núcleo que calculamos. Fazendo uma conta rápida, percebemos que a menor gravidade atingida por nosso herói é de 40% a gravidade total da Terra. O valor que esperávamos era de 17%, se a gravidade decrescesse linearmente, mas devemos levar em conta o fato do núcleo ser muito mais denso que o resto da Terra. Assim, um túnel que liga Londres a Sidney, se construído pelo melhor caminho possível (o que conduz os passageiros no melhor tempo), atinge uma gravidade mínima de 40%, que é entre duas a três vezes a gravidade da Lua.

Curiosamente, o sul da América do Sul e a Ásia do leste são as únicas massas continentais urbanas antípodas, sendo a única explicação para o filme a de retratar uma metrópole opressora e cruel que não pode ser outra além de Porto Alegre, Buenos Aires, Santiago ou Montevideo.

Esses três parágrafos anteriores são exagero de minha parte. O filme queria gravidade zero pela trama, as belas cenas de ação, eu entendo. Não sou chato em filmes, juro. Quando me sento na cadeira do cinema, o Super-Homem pode voar e eu não ligo, em Lost, a ilha podia até flutuar, desaparecer, rodar que eu não me espantaria; mas se um filme tenta passar a imagem de cientificamente correto, tem que cumprir o que promete. Se explosão barulhenta no espaço é crime na ficção científica, gravidade binária, por mais relevante que tenha sido para a trama, fica bem difícil de engolir.

Férias

Geek Hardcore Rookie

Nesse post, declaro férias do blog por catorze dias. Depois de seis meses em uma frequência de mais de um post por semana, preciso de um tempo para respirar e colocar os posts em dia sem comprometer a qualidade. Estou de férias, e isso significa que a inspiração é fraca enquanto não estou estudando e trabalhando. Férias são férias, e isso inclui dos textos desse blog.

Aos que ficam, ou que passam por aqui pela primeira vez, deixo uma lista de meus quatro posts favoritos, caso ainda não os tenham visto:

No cassino de Parrondo.

A pior forma de governo.

Aniversários.

Informação e demônios.

Até dia 17.

O teorema das cores

Rookie

Na coleção de meus teoremas favoritos, o teorema das cores tem um lugar especial. Eu trabalhava na usina nuclear de Belleville-sur-Loire quando o responsável de meu setor explicava as divisões e departamentos da central. Ele tomou uma planta dos principais encanamentos, aquecedores e turbinas e pôs-se a remarcar os setores da usina: os aquecedores primários, os secundários, a transmissão do reator às válvulas, o condensador, cada setor era marcado com uma cor, e setores vizinhos possuíam cores diferentes, para não causar confusão. Ele usava aqueles marcadores Stabilo coloridos, e, olhando para sua coleção de canetas, apenas quatro cores, disse: “acho que não vou ter canetas para marcar todos”. Quase eufórico, respondi: não, você vai!

Nenhum atlas que se preze tentaria um desenho tão minimalista dos mapas, em geral vemos países em várias cores e tons, e sempre temos aquela caixa de doze cores da Faber-Castell para colorir o papel-vegetal em nossas aulas de geografia na infância, o teorema, por isso, nem é tão famoso. Ainda, quatro cores colorem qualquer mapa, e esse resultado foi um dos de mais difícil demonstração na história da matemática.

Esse teorema, o das quatro cores, era conjecturado havia muito antes de sua demonstração, que é tida como uma das mais feias da matemática. Antes de comentar a prova, vamos comentar o teorema.

Esse teorema é apenas válido para mapas cujos países são conexos, ou seja, o caso do Alaska, parte dos EUA e desconexo do resto do país, não pode ser incluído. Com apenas regiões conexas, é fácil perceber que você precisa de ao menos quatro cores para colorir um mapa; é possível encontrar quatro países vizinhos uns dos outros de forma a exigir quatro cores. Temos, como exemplo simples, o Paraguai e Luxemburgo. Deste último, usando todas as minhas habilidades de cartografia, compus um pequeno diagrama de suas fronteiras: França, Alemanha e Bélgica. Esses três países fazem fronteira entre si e com Luxemburgo, preciso de quatro cores para pintar esse mapa:

Mas é completamente impossível, em um mapa plano ou em uma esfera, desenhar cinco países tais que todos fazem fronteiras com todos. Esse é um exercício divertido, tentar compor o mais estranho dos mapas e ir colorindo pouco a pouco, convencendo-se do teorema, tentando exigir uma quinta cor, e jamais precisando. A Wikipédia possui um exemplo interessante de mapa caótico, irreal e muito mais bagunçado que o de um atlas seria, e ainda conseguimos colori-lo com não mais que quatro cores.

A demonstração desse teorema é surpreendente. Abandonando os ideais de beleza matemáticos, a busca de uma prova elegante e concisa de um resultado tão bonito, dois matemáticos em 1961, Appel e Haken, demonstraram, grosso modo, que todas as situações de mapas planos que precisam ser coloridos caem em 1 de 1.936 casos. É isso mesmo: eles demonstraram, em um abuso de linguagem, que todo mapa não é mais que um caso levemente modificado ou composto de 1.936 tipos possíveis de mapa. Com esse conjunto em mãos, eles coloriram todos com quatro cores e o teorema estava provado.

É importante notar que tanto para encontrar os 1.936 mapas quanto para os colorir, Haken e Appel usaram os computadores disponíveis na época, tornando essa a primeira grande demonstração a ser realizada por exaustão através de um computador. Beleza matemática é algo relativo, mas dificilmente um matemático diria que enumerar 1.936 casos possíveis do teorema e provar um resultado para todos configura estética matemática.

Pouco a pouco a demonstração foi aceita, e hoje é tida como a demonstração padrão do problema das cores. Em uma esfera ou plano, apenas quatro são necessárias. Se, contudo, seu planeta fosse uma rosquinha, você precisaria de sete cores para preencher todos os mapas. O número de cores necessárias para colorir um mapa possui uma relação profunda com a geometria do objeto, e abre diversas questões ainda mais difíceis de responder que o teorema das quatro cores.

Meu chefe na usina nuclear não conseguiu usar apenas quatro cores. Em sua pressa de enumerar os departamentos, fez escolhas ruins e achou que precisaria de cinco, tentando provar triunfante que essa história de teorema era furada. Nada pude dizer, sorri, culpei as canetas e passei toda aquela tarde tentando entender as siglas de muito mais que 1936 encanamentos, turbinas, aquecedores e motores.